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SOME  OBSERVATIONS OF THE  BEHAVIOR OF SPHERICAL  HARMONIC  WAVES* 
. .  
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ABSTRACT 

One month of daily  spherical  harmonic  expansions of 500-mb. height in the  Northern Hemisphere were studied. 
The  movements of the waves are compared with the Rossby-Haurwitz wave speeds computed from the zonal geo- 
strophic wind profile. Systematic differences between the observed and theoretical wave speeds are found. 

1. INTRODUCTION 

The description of the isobaric and stream-function 
fields in terms of surface-spherical harmonics  is of special 
interest because the  latter  are  characteristic functions of 
the nonlinear  vorticity  equation. The speed of movement 
of these spherical-harmonic waves  can  therefore be 
theoretically  calculated  (assuming nondivergence) with- 
out  the assumption of small  amplitude that underlies the 
familiar  Rossby wave speed. There  have been many 
theoretical  studies of the behavior of the spherical- 
harmonic waves (Neamtan [12j, Haurwitz  and  Craig [7], 
Silberman [15], Platzman [13], [14], Kubota [9]) and some 
papers  on  numerical  prediction using spherical-harmonic 
expansions (Baer and  Platzman [2] and  Baer [l]), but 
so far  very  little evidence on  the behavior of spherical- 
harmonic expansions of real fields has  appeared  in  the 
literature. 

Dr. H. W. Ellsaesser of the Lawrence  Radiation  Lab- 
oratory, Livermore, has kindly  provided  me  with  daily 
computations,  for April 1960, of spherical-harmonic 
expansions of the 500-mb. height  over  the  Northern 
Hemisphere, and some aspects of the behavior of these 
are  presented  in  this  paper. A month is a relatively 
small  sample, so that there  is considerable statistical 
uncertainty  in  the results, but it appears  to  be sufficient 
for some conclusions to  be  drawn from it. The  results 
are  relevant  to  the  experiments  with  numerical  pre- 
diction using spherical  harmonics, in fact  they  present 
some interesting  contrasts  with  the  results of Baer’s 
[l] computations. 

9. BASIC FORMULAS 
The height of the isobaric surface, as a function of 

latitude,  longitude, and time,  is expressed as 

*(x, P, t) =Cm,n%Yt)EXL(>efmX ( 1) 
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where X is longitude; p=sin cp, where cp is latitude; m is lon- 
gitudinal wave number (also called the Lkank”) ; nis the degree 
of the harmonic (n-m is similar to  a wave number of 
latitudinal  variation); e is the normalized associated 
Legendre polynomial of rank m and degree n, and %?(t) 
is the (complex) amplitude of the  particular harmonic. 

The reader  is referred to  the papers of Haurwitz  and 
Craig [7] and Silberman [15] for  detailed discussions of 
the spherical-harmonic representation of geophysical fields. 

When working with  only  one hemisphere of data only 
half the full number of harmonics is necessary. For those 
considered here (n-m) takes odd  values  only.  These 
“odd  harmonics” are realistic in that  they all have zero 
amplitude at the  equator, while the implied anti-symmetric 
Southern  Hemisphere may  be ignored as  a  mathematically 
necessary but physically inconsequential  addition to 
Northern  Hemisphere fields. 

Platzman [14] has shown that  the nondivergent  vorticity 
equation  leads to  the following expression for the  phase 
speed; i.e., the change of phase  with  time, which is  equiva- 
lent  to  the speed of movement of the wave: 

where X, 0, and cy represent  three different (m, n) pairs, 
mx and nx are  the  rank  and degree of the X-harmonic, 
f x  is the absolute  vorticity associated with  the  particular 
harmonic X, is the zonally averaged  absolute  vorticity, 
; ( p )  is the absolute  angular velocity of the zonally averaged 
flow, and Ix.B,u represents  a coefficient of interaction. 
The earth’s radius.  and the reciprocal of the  angular 
velocity of the  earth  are  the  units of length  and  time 
respectively. 

In equation (2), the  integral is the  contribution of the 
zonal wind speed and  the  earth’s  rotation  to  the  total 
wave speed, and  might  reasonably be called the Rossby- 
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Haurwitz wave speed. It is called the "convective wave 
speed" by  Platzman [14]. The second term  is  the  sum 
of the effects of all the  interactions with  other waves, and 
is called the "eddy phase speed" by Platzman. 

3. ANALYSIS OF THE DATA 

When the lower harmonics  are  plotted  on  a  polar dia- 
gram  as  in figure l, it is immediately apparent  that  the 
wave vector does not describe a circle around the pole as 
it would in the case of a single moving wave, but instead 
follows an eccentric  circular path as if it represented the 
sum of a  more or less k e d  wave and a  traveling wave. 
This two-component model of the lowest harmonics  has 
been discussed by Deland [4] when analyzing zonal 
Fourier harmonics. Figure 1 is  a better  illustration of 
this  behavior than was obtained from the  Fourier zonal 
harmonics,  for  reasons that will be  apparent  later. 

Because of the eccentric  circular  motion of the lower 
harmonics, the wave speeds were determined from the 
analysis of the angle Aa (see  fig. 1). For uniform circular 
motion,  eccentric or not, Aa would be  constant  and  the 
speed of movement of the moving wave would be 

w=Aa radians (of phase)  day" 

- -- - 360 deg. long. day" 
m 27 

Note  that since the phase  changes by 360' while the 
longitudinal "position" of the wave (e.g., the longitude 
of a  maximum) changes by 360'/m, the longitudinal speed 
is  equal to (phase  speed)/m. In the case of centered 
circular  motion  (traveling  component  only) , Aa= Ap, 
where cp is the phase of the harmonic. For  the smaller- 
scale waves  there  is negligible difference -between  the 
behavior of Aa and Ap. 

Large and  erratic  values of A a  occur especially often 
when the  actual change  in the wave  is small. These 
seem to be for the most part unrepresentative. Accord- 
ingly, the  representative  wave  speeda was estimated by 
weight,ing the speed by  the  magnitude of the vector change 
according to the formula: 

- 
w = x  (A1+2 Ai+Azs) Aai 

2Trn i=2 i=2 

23 -1 29 

(A,_,+A,) deg. long. day" (4) 

See figure 1 for the meanings of the symbols. For a 
qualitative check on the reliability of this procedure, the 
values of A a  were in each case classified in 10' classes and 
plotted  in  the form of a  frequency  diagram. The fre- 
quency  diagrams for some of the cases considered are 
reproduced in figure 2, with  the average wave speed indi- 
cated. The average  wave speed agrees quite well with 
the mode of the  distributions in most cases, with some 
exceptions that will be discussed later. 

The integral  in  equation (2) was numerically integrated 
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FIGURE '1.-Polar diagram  for th; harmonic (1,2), each  point 
representing  one  day.  Amplitude  in  meters,  phase  increasing 
anticlockwise in  same sense as longitude  east of Greenwich, with 
zero phase  corresponding to a maximum at the Greenwich 
meridian. 

using the mean (for April 1960) zonal profile of geopo- 
tential a.nd the geostrophic assumption. The values of 
the weighting factor were determined  from the 
graphs,  tables, and coefficients published in  Jahnke  and 
Emde [8], the  Mathematical  Tables  Project [ll], and 
Egersdorfer  and  Egersdorfer [5] respectively (in order of 
increasing complexity and decreasing convenience of 
use-one  goes as  far  as  one  can  with each in  turn).  The 
two parts of the  integral were evaluated  separately;  the 
details are given in the Appendix. 

The calculations were made for longitudinal  wave 
numbers 1-10, for the first  four  values of n-m,  except  for 
m = l  and 2, for which the speeds were evaluated for five 
degrees each. For each wave number  the highest  degree 
considered here corresponds roughly to  a latitudinal  half- 
wavelength of 20'-25' latitude.  The  computations were 
carried out  up to m= 10 only, partly because the  estimation 
of -average speeds is increasingly uncertain  as  the  wave 
number increases beyond 10 and  speeds :increase (see 
discussion of m= 10 later  in  the  paper). 

Average observed ,speeds, and theoretical speeds esti- 
mated  as explained above, are shown in  table 1. Average 
amplitudes of the observed waves are also shown in 'the 
table. It is apparent from the  latter  that  the computn- 
tions  here  presented were not  carried out to small enough 
scales to  include all the  waves that  contribute significantly 
to  the  total  variation,  but  the  important waves are 
included. 
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FIGURE  2.-Frequency  diagrams for the angle A a  (see fig. 1 for specification) for m= 1-10, n=m+ 1 and m+3.  Corresponding  mean 
wave  speeds are  indicated by arrow. 
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TABLE 1.-Theoretical and observed wave speeds ( in  degrees of longitude per day)  

I Longitudinal  wave  number 

l 1 I Z l 3  10 4 1 5  
14.7 I 14.5 10.9 8.8 6.3  4.2 

('9 1. 
(7, (8, lul, (9, W o ,  

2.0 
10.5 

4.9 
9.1 

4.7 
10.7 10.4 

5.2 

17.2  13.1 9.7 7.8 

(6, W g ,  (7, '2io,  (8.13) 
10.5 10.7 

11.9  10.7 12.5 
6.3 

10.6 
7.0 

12.6  10.5  7.8 7.9 

(9,14) 

4.3 5.5 

6 1 3 )  (7,14) 
9.6  9.3 9.8 10.8 
6. 2 6.3 

12.4  12.1  13.3 10. 1 
7.0 7.7 

(8,15) (9 ,W 

3.3 

(10,13) 
10.4 
5.9 
7.4 

I 

17.9 I 21. 1 5.4 

(lo, 15) 
10.9 

8.9 
7.6 

Amp- _ _  - - _. .. . .. . .-_.._.___.____I 22.9 I 21.7 I 19.7 17.2 I 12.2 
I I I 

14.1 I 7.0 3.7 

Adv.=Advective  part (see Appendix) of R-H speed. 
R-H=Theoretical  nondivergent  (Rossby-Haurwitz)  speed 
Obs.=Observed  weighted  average  speed. 
Amp.  =Average  amplitude of harmonic in meters. 

The observed average speeds are  plotted  against  the 
Rossby-Haurwitz  speeds  in figure 3, omitting  the  large 
negative wave speeds for m= 1,2 ,  and 3. The correspond- 
ing average  phase differences (equal to m times  the  average 
speed) are  indicated  on  the  frequency  diagrams in figure 2. 

4. DISCUSSION 
The westward  movement of the waves of greatest scale, 

noticed by  Kubota  and  Iida [lo] and  recently discussed by 
Deland [4], is very well shown by these data (especially for 
!Pi; see fig. 1). The retrogressions of !Pi and Y?:, the 
lowest degrees of the two longest waves, though  rapid, 
are  not  as  rapid  as predicted by  the nondivergent  vorticity 
equation. It is of interest that  the larger  westward  wave 
speeds of the  Fourier zonal harmonics  found  previously 
(Deland [4]) agree  very well with  the  Rossby-Haurwitz 
wave speeds, but this  may  be coincidence. 

All the waves show greater  eastward, or less rapid 
westward,  motion than would be  predicted  from  the 
Rossby-Haurwitz  wave  speed. The variation  with de- 
gree (i.e., with  respect  to  latitudinal scale) for each 
longitudinal  wave number is approximately in accordance 
with  the nondivergent  Rossby-Haurwitz wave speed. 
An elegant  illustration of the variation of speed  with 
latitudinal scale is the case of longitudinal  wave number 
3-the lowest degree moves westward while the higher 
degrees move eastward (see figs. 3  and 4). This  is be- 
lieved to  be  the first  time the much-predicted  variation 

1 
I 

-10 0 

R o s s b y -  H o u r w i f z  S p e e d  + D e g .  Long. D o y - l  

FIGURE 3.-Observed mean  wave  speeds plotted  against  Rossby- 
Haurwita  wave  speeds.  The  points for each  longitudinal  wave 
number  are  joined  by  straight lines in  order of increasing n 
(decreasing latitudinal scale)  with the  longitudinal wave  number 
printed  near  the  first  point (m,m-t  1). The  large  negative  speeds 
for wave  numbers 1, 2, and 3 are  omitted. 
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FIGURE 4.-Daily vdues of the harmonics (3,4) and (3,lO) plotted 
on polar  diagrams.  Otherwise the  same as for figure 1. 

of speed with  latitudinal  .scale  has been shoacrll to exist 
for  actual observed waves. 

For the lowest degree of each of 'the liigher wave 
numbers,  such as q:o, the Rossby-Haurwitz wave 
speeds are especially small, compared to their  values  for 
other harmonics. This is apparently because the  greatest 
weighting of the zonal wind speed in  the  integral  in 
equation (2) shifts  into low latitudes where the zonal 
wind is less, as  the wave number increases. These low 
Rossby-Haurwitz wave speeds are  particularly  unrealistic 
compared to  the observed wave motions. 

In  the case of wave number 10 the frequency  diagrams 
in figure 2 show a relatively  small  number of occurrences 
of small  negative values and  a  relatively  large  number 
of large  negative values near -180". Bearing. in  mind 

that we cannot distinguish between an angle e and  its 
"negative complement" ( O - ~ T ) ,  it appe'iirs that these 
large negative values correspond to eastward'  movements 
of more than 180" in phase, i.e., 18" of longitude for 
wave number 10. The left-hand end of the frequency 
distribution  apparently  is the extension of the  right-hand 
end. The misinterpretation of those  movements  in the 
mean wave-speed computation  leads  to  underestimation 
of the wave speed. A similar observation was made  by 
Eliasen [6] in  analyzing  Fourier zonal harmonics. 

A noteworthy  feature of the observed wave motions  is 
their  approximate  agreement  with the predictions of the 
nondivergent  vorticity  equation  throughout the  entire 
range of wave numbers.  This  is of considerable interest 
in relation to Burger's [3] conclusion that  the vorticity. 
equation loses its  dynamic  nature for planetary-scale 
motions. The ultra-long  traveling waves apparently  do 
not belong in the category of Burger's planetary waves, 
aside from being disqualified in  any case for moving. 

Why do the waves considered here move so fast toward 
the east, including the retrogressing waves of greatest 
scale, whose westward speed is  less than expected from 
the nondivergent  vorticity  equation? There  are  many 
possible explanations, and it is  certainly not nqcessary 
to  assume that one explanation suflices for all scales, but 
it is possible that they  are all c a s e d  along by  the  faster- 
moving smaller-scale waves, by means of the nonlinear 
interactions. One could consider the presumably r'andom 
(in.  this respect) interactions as "turbulence" in' fh6 two- 
dimensional rank-and-degree domain,  tending to ,"mix" 
the wave velocities to a uniform value. This hypothesis 
can only be tested, of course, by using more complete 
models such as that of Baer [l]. 

APPENDIX:  COMPUTATION OF ROSSBY-HAURWITZ 
WAVE SPEEDS 

The integral  in  equation (2) was split  into two parts 

A A 

A. Since p=sin 'p, and Q(p)=Q++(p)  where Q is the 
constant  angular velocity of the  earth  and ~ ( p )  is the an- 
gular velocity of the average zonal wind, the  integral 
can be  written 

A 
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(as long as we use the normalization of the harmonics 
given by  Platzman [14]). 

Subtracting Q we have 

as  the “advective”  contribution  to  the relative wave speed. 
I ts  value  is  listed  separately  in table 1. 

The integral was numerically  integrated as 

with  small  end corrections, with Acp=lOo for the lower- 
degree, smoother,  harmonics and 5’ for the higher-degree 
harmonics. An approximate check on  the  integration 
procedure is given by  the  requirement  that 

A 

; (p )  was evaluated  as ___ u(cp) 9 where U(cp) is the zonal 

wind speed and a is the  radius of the  earth. a ( p )  was 
determined by differencing over 5’ latitude  the  monthly 
average  height profile, assuming  geostrophic winds. With 
U(cp) in m. sec.” and a in meters, the speed is expressed 
in  radians per second and was then multiplied by 
(86,40OX360)/2s to  bring it to degrees of longitude per 
day. 

B. Again with the anti-symmetric  assumption, the 
integral was expressed as 

A 

a cos cp 

A 

i=j+trel was evaluated at  10’ and 5’ latitude inter- 
vals, and  the  integral expressed as 

again  with  estimated  end  corrections, which are  somewhat 
uncertain  in  this  case but in no case affect the results 
significantly. The conversion to degrees of longitude 
per day is straightforward. 
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